ar X iv : 1 30 7 . 47 46 v 1 [ m at h . D G ] 1 7 Ju l 2 01 3 RIGIDITY OF ASYMPTOTICALLY CONICAL SHRINKING GRADIENT RICCI SOLITONS

نویسنده

  • LU WANG
چکیده

We show that if two gradient Ricci solitons are asymptotic along some end of each to the same regular cone ((0,∞)× Σ, dr + r2gΣ), then the soliton metrics must be isometric on some neighborhoods of infinity of these ends. Our theorem imposes no restrictions on the behavior of the metrics off of the ends in question and in particular does not require their geodesic completeness. As an application, we prove that the only complete connected gradient shrinking Ricci soliton asymptotic to a rotationally symmetric cone is the Gaussian soliton on Rn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 7 . 41 81 v 1 [ m at h . D G ] 2 5 Ju l 2 00 8 the canonical shrinking soliton associated to a ricci flow

To every Ricci flow on a manifold M over a time interval I ⊂ R, we associate a shrinking Ricci soliton on the space-time M×I . We relate properties of the original Ricci flow to properties of the new higher-dimensional Ricci flow equipped with its own time-parameter. This geometric construction was discovered by consideration of the theory of optimal transportation, and in particular the result...

متن کامل

ar X iv : 0 70 7 . 19 46 v 1 [ m at h . D G ] 1 3 Ju l 2 00 7 The uniqueness of the helicoid in the Lorentz - Minkowski space

We prove that the Lorentzian helicoid and Enneper’s surface are the unique properly embedded maximal surfaces bounded by a lightlike regular arc of mirror symmetry.

متن کامل

The volume growth of complete gradient shrinking Ricci solitons

We prove that any gradient shrinking Ricci soliton has at most Euclidean volume growth. This improves a recent result of H.-D. Cao and D. Zhou by removing a condition on the growth of scalar curvature. A complete Riemannian manifold M of dimension n is called gradient shrinking Ricci soliton if there exists f ∈ C (M) and a constant ρ > 0 such that Rij +∇i∇jf = ρgij , where Rij denotes the Ricci...

متن کامل

ar X iv : 1 60 9 . 02 10 5 v 1 [ m at h . D G ] 7 S ep 2 01 6 ROTATIONAL SYMMETRY OF ASYMPTOTICALLY CONICAL MEAN CURVATURE FLOW SELF - EXPANDERS

In this article, we examine complete, mean-convex self-expanders for the mean curvature flow whose ends have decaying principal curvatures. We prove a Liouville-type theorem associated to this class of self-expanders. As an application, we show that mean-convex self-expanders which are asymptotic to O(n)-invariant cones are rotationally symmetric.

متن کامل

ar X iv : 0 90 2 . 28 05 v 1 [ m at h . D G ] 1 7 Fe b 20 09 Computing the density of Ricci - solitons on CP 2 ♯ 2 CP 2

This is a short note explaining how one can compute the Gaussian density of the Kähler-Ricci soliton and the conformally Kähler, Einstein metric on the two point blow-up of the complex projective plane.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013